Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
China Journal of Chinese Materia Medica ; (24): 1705-1710, 2023.
Article in Chinese | WPRIM | ID: wpr-981387

ABSTRACT

Novel drug discovery from the active ingredients of traditional Chinese medicine is the most distinctive feature and advantageous field of China, which has provided an unprecedented opportunity. However, there are still problems such as unclear functional substance basis, action targets and mechanism, which greatly hinder the clinical transformation of active ingredients in traditional Chinese medicine. Based on the analysis of the current status and progress of innovative drug research and development in China, this paper aimed to explore the prospect and difficulties of the development of natural active ingredients from traditional Chinese medicine, and to explore the efficient discovery of trace active ingredients in traditional Chinese medicine, and obtain drug candidates with novel chemical structure, unique target/mechanism and independent intellectual property rights, in order to provide a new strategy and a new model for the development of natural medicine with Chinese characteristics.


Subject(s)
Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Research , Drug Discovery , China
2.
Journal of Pharmaceutical Analysis ; (6): 15-27, 2021.
Article in Chinese | WPRIM | ID: wpr-883495

ABSTRACT

Mammalian catechol-O-methyltransferases(COMT)are an important class of conjugative enzymes,which play a key role in the metabolism and inactivation of catechol neurotransmitters,catechol es-trogens and a wide range of endobiotics and xenobiotics that bear the catechol group.Currently,COMT inhibitors are used in combination with levodopa for the treatment of Parkinson's disease in clinical practice.The crucial role of COMT in human health has raised great interest in the development of more practical assays for highly selective and sensitive detection of COMT activity in real samples,as well as for rapid screening and characterization of COMT inhibitors as drug candidates.This review summarizes recent advances in analytical methodologies for sensing COMT activity and their applications.Several lists of biochemical assays for measuring COMT activity,including the probe substrates,along with their analytical conditions and kinetic parameters,are presented.Finally,the challenges and future perspec-tives in the field,such as visualization of COMT activity in vivo and in situ,are highlighted.Collectively,this review article overviews the practical assays for measuring COMT activities in complex biological samples,which will strongly facilitate the investigations on the relevance of COMT to human diseases and promote the discovery of COMT inhibitors via high-throughput screening.

3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 944-953, 2021.
Article in English | WPRIM | ID: wpr-922776

ABSTRACT

Huosu Yangwei (HSYW) Formula is a traditioanl Chinese herbal medicine that has been extensively used to treat chronic atrophic gastritis, precancerous lesions of gastric cancer and advanced gastric cancer. However, the effective compounds of HSYW and its related anti-tumor mechanisms are not completely understood. In the current study, 160 ingredients of HSYW were identified and 64 effective compounds were screened by the ADMET evaluation. Furthermore, 64 effective compounds and 2579 potential targets were mapped based on public databases. Animal experiments demonstrated that HSYW significantly inhibited tumor growth in vivo. Transcriptional profiles revealed that 81 mRNAs were differentially expressed in HSYW-treated N87-bearing Balb/c mice. Network pharmacology and PPI network showed that 12 core genes acted as potential markers to evaluate the curative effects of HSYW. Bioinformatics and qRT-PCR results suggested that HSYW might regulate the mRNA expression of DNAJB4, CALD, AKR1C1, CST1, CASP1, PREX1, SOCS3 and PRDM1 against tumor growth in N87-bearing Balb/c mice.


Subject(s)
Animals , Mice , Biomarkers , China , Drugs, Chinese Herbal , Network Pharmacology , Stomach Neoplasms/genetics
4.
China Journal of Chinese Materia Medica ; (24): 6422-6434, 2021.
Article in Chinese | WPRIM | ID: wpr-921802

ABSTRACT

This paper aims to systematically analyze the peptides and proteins from Asini Corii Colla(ACC) through shotgun proteomics. After high-pH reversed-phase fractionation, the proteins and peptides in the hydrolysate of ACC were further separated by nano LC-Q-Exactive-MS/MS under the following conditions: Thermo Scientific EASY column(100 μm×2 cm, 5 μm, C_(18)) as precolumn, Thermo Scientific EASY column(75 μm×100 mm, 3 μm, C_(18)) for solid phase extraction, gradient elution with 0.1% formic acid in water(mobile phase A) and 84% acetonitrile in water containing 0.1% formic acid(mobile phase B), and MS in positive ion mode. Based on Uniprot_Equus caballus, MS data, and literature, 2 291 peptides were identified from ACC by MaxQuant, with 255 Maillard reactions(AML, CML, CEL)-modified peptides identified for the first time. Through alignment, the peptides were found to belong to 678 equine proteins. In conclusion, the combination of nano LC-Q-Exactive-MS/MS and shotgun proteomics achieved rapid and accurate identification of the proteins and peptides in ACC, which provides the key information and new insights for further investigation of chemicals and effective substances in ACC.


Subject(s)
Animals , Chromatography, Liquid , Horses , Peptides , Proteins , Proteomics , Tandem Mass Spectrometry
5.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 321-338, 2021.
Article in English | WPRIM | ID: wpr-881074

ABSTRACT

Cephalotaxus is the only genus of Cephalotaxaceae family, and its natural resources are declining due to habitat fragmentation, excessive exploitation and destruction. In many areas of China, folk herbal doctors traditionally use Cephalotaxus plants to treat innominate swollen poison, many of which are cancer. Not only among Han people, but also among minority ethnic groups, Cephalotaxus is used to treat various diseases, e.g., cough, internal bleeding and cancer in Miao medicine, bruises, rheumatism and pain in Yao medicine, and ascariasis, hookworm disease, scrofula in She medicine, etc. Medicinal values of some Cephalotaxus species and compounds are acknowledged officially. However, there is a lack of comprehensive review summarizing the ethnomedicinal knowledge of Cephalotaxus, relevant medicinal phytometabolites and their bioactivities. The research progresses in ethnopharmacology, chemodiversity, and bioactivities of Cephalotaxus medicinal plants are reviewed and commented here. Knowledge gaps are pinpointed and future research directions are suggested. Classic medicinal books, folk medicine books, herbal manuals and ethnomedicinal publications were reviewed for the genus Cephalotaxus (Sanjianshan in Chinese). The relevant data about ethnobotany, phytochemistry, and pharmacology were collected as comprehensively as possible from online databases including Scopus, NCBI PubMed, Bing Scholar, and China National Knowledge Infrastructure (CNKI). "Cephalotaxus", and the respective species name were used as keywords in database search. The obtained articles of the past six decades were collated and analyzed. Four Cephalotaxus species are listed in the official medicinal book in China. They are used as ethnomedicines by many ethnic groups such as Miao, Yao, Dong, She and Han. Inspirations are obtained from traditional applications, and Cephalotaxus phytometabolites are developed into anticancer reagents. Cephalotaxine-type alkaloids, homoerythrina-type alkaloids and homoharringtonine (HHT) are abundant in Cephalotaxus, e.g., C. lanceolata, C. fortunei var. alpina, C. griffithii, and C. hainanensis, etc. New methods of alkaloid analysis and purification are continuously developed and applied. Diterpenoids, sesquiterpenoids, flavonoids, lignans, phenolics, and other components are also identified and isolated in various Cephalotaxus species. Alkaloids such as HHT, terpenoids and other compounds have anticancer activities against multiple types of human cancer. Cephalotaxus extracts and compounds showed anti-inflammatory and antioxidant activities, immunomodulatory activity, antimicrobial activity and nematotoxicity, antihyperglycemic effect, and bone effect, etc. Drug metabolism and pharmacokinetic studies of Cephalotaxus are increasing. We should continue to collect and sort out folk medicinal knowledge of Cephalotaxus and associated organisms, so as to obtain new enlightenment to translate traditional tips into great therapeutic drugs. Transcriptomics, genomics, metabolomics and proteomics studies can contribute massive information for bioactivity and phytochemistry of Cephalotaxus medicinal plants. We should continue to strengthen the application of state-of-the-art technologies in more Cephalotaxus species and for more useful compounds and pharmacological activities.

6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 305-320, 2021.
Article in English | WPRIM | ID: wpr-881073

ABSTRACT

Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.


Subject(s)
Animals , Mice , Administration, Oral , Alkaloids/analysis , COVID-19 , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacokinetics , Flavonoids/analysis , SARS-CoV-2 , Saponins/analysis , Triterpenes/analysis
7.
China Journal of Chinese Materia Medica ; (24): 638-644, 2021.
Article in Chinese | WPRIM | ID: wpr-878890

ABSTRACT

According to human carboxylesterase 2(hCE2) inhibitors reported in the literature, the pharmacophore model of hCE2 inhibitors was developed using HipHop module in Discovery Studio 2016. The optimized pharmacophore model, which was validated by test set, contained two hydrophobic, one hydrogen bond acceptor, and one aromatic ring features. Using the pharmacophore model established, 5 potential hCE2 inhibitors(CS-1,CS-2,CS-3,CS-6 and CS-8) were screened from 20 compounds isolated from the roots of Paeonia lactiflora, which were further confirmed in vitro, with the IC_(50) values of 5.04, 5.21, 5.95, 6.64 and 7.94 μmol·L~(-1), respectively. The results demonstrated that the pharmacophore model exerted excellent forecasting ability with high precision, which could be applied to screen novel hCE2 inhibitors from Chinese medicinal materials.


Subject(s)
Humans , Carboxylesterase/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 369-378, 2020.
Article in English | WPRIM | ID: wpr-827233

ABSTRACT

Pancreatic lipase (PL), a crucial enzyme in the digestive system of mammals, has been proven as a therapeutic target to prevent and treat obesity. The purpose of this study is to evaluate and characterize the PL inhibition activities of the major constituents from Fructus Psoraleae (FP), one of the most frequently used Chinese herbs with lipid-lowering activity. To this end, a total of eleven major constituents isolated from Fructus Psoraleae have been obtained and their inhibition potentials against PL have been assayed by a fluorescence-based assay. Among all tested compounds, isobavachalcone, bavachalcone and corylifol A displayed strong inhibition on PL (IC < 10 μmol·L). Inhibition kinetic analyses demonstrated that isobavachalcone, bavachalcone and corylifol A acted as mixed inhibitors against PL-mediated 4-methylumbelliferyl oleate (4-MUO) hydrolysis, with the K values of 1.61, 3.77 and 10.16 μmol·L, respectively. Furthermore, docking simulations indicated that two chalcones (isobavachalcone and bavachalcone) could interact with the key residues located in the catalytic cavity of PL via hydrogen binding and hydrophobic interactions. Collectively, these finding provided solid evidence to support that Fructus Psoraleae contained bioactive compounds with lipid-lowering effects via targeting PL, and also suggested that the chalcones in Fructus Psoraleae could be used as ideal leading compounds to develop novel PL inhibitors.

9.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 75-80, 2020.
Article in English | WPRIM | ID: wpr-781222

ABSTRACT

Purpurolides D-F (1-3), three new polyoxygenated bergamotanes bearing a 6/4/5/5 tetracyclic ring system, were isolated from the endophytic fungus Penicillium purpurogenum IMM 003. Their structures were unambiguously elucidated based on extensive spectroscopic data analyses, C NMR chemical shifts calculations coupled with the DP4+ probability method, and the calculated and experimental electronic circular dichroism (ECD) spectra. Compounds 1-3 showed significant inhibitory activity against pancreatic lipase (PL). The result highlights that the presence of 3-hydroxylated decanoic acid moiety at C-14 is important for increasing the inhibition potency against PL.

10.
Journal of Pharmaceutical Analysis ; (6): 263-270, 2020.
Article in Chinese | WPRIM | ID: wpr-824004

ABSTRACT

The human UDP-glucuronosyltransferase 1A1 (UGT1A1), one of the most essential conjugative enzymes, is responsible for the metabolism and detoxification of bilirubin and other endogenous substances, as well as many different xenobiotic compounds. Deciphering UGT1A1 relevance to human diseases and characterizing the effects of small molecules on the activities of UGT1A1 requires reliable tools for probing the function of this key enzyme in complex biological matrices. Herein, an easy-to-use assay for highly-selective and sensitive monitoring of UGT1A1 activities in various biological matrices, using liquid chromatography with fluorescence detection (LC-FD), has been developed and validated. The newly developed LC-FD based assay has been confirmed in terms of sensitivity, specificity, precision, quanti-tative linear range and stability. One of its main advantages is lowering the limits of detection and quantification by about 100-fold in comparison to the previous assay that used the same probe substrate, enabling reliable quantification of lower amounts of active enzyme than any other method. The precision test demonstrated that both intra- and inter-day variations for this assay were less than 5.5%. Further-more, the newly developed assay has also been successfully used to screen and characterize the regu-latory effects of small molecules on the expression level of UGT1A1 in living cells. Overall, an easy-to-use LC-FD based assay has been developed for ultra-sensitive UGT1A1 activities measurements in various biological systems, providing an inexpensive and practical approach for exploring the role of UGT1A1 in human diseases, interactions with xenobiotics, and characterization modulatory effects of small mole-cules on this conjugative enzyme.

11.
Acta Pharmaceutica Sinica ; (12): 1478-1493, 2020.
Article in Chinese | WPRIM | ID: wpr-823323

ABSTRACT

Obesity is an important cause of a panel of metabolic diseases, such as hypertension, hyperlipidemia, arteriosclerosis, type 2 diabetes and various cancers. Discovery of anti-obesity agents has always been a hot spot in the field of new drug research and development. Pancreatic lipase (PL, also named triacylglycerol acyl hydrolase), a key enzyme responsible for the hydrolysis of 50%-70% dietary fats in the gastrointestinal system, which has been recognized as a crucial target for the prevention and treatment of obesity. PL inhibitors can reduce the decomposition and absorption of dietary fat in the digestive organs by decreasing the hydrolytic activity of this key enzyme, which can alleviate the symptoms of metabolic diseases such as obesity and hyperlipidemia. Although a potent PL inhibitor (orlistat) has been marketed, it may trigger gastrointestinal side effects after long-term use. Therefore, it is necessary to develop more new PL inhibitors with strong inhibition potency and safety. In recent years, a large number of studies have found that some Chinese herbal extracts and their constituents can regulate lipid metabolism and treat obesity via inhibiting PL. In this paper, the research progress in the field pancreatic lipase inhibitors, as well as the extracts of Chinese herbs and their constituents with pancreatic lipase inhibitory effects were summarized. Meanwhile, the PL inhibition activities and inhibitory mechanisms of herbal constitutes were also summarized systematically. In addition, the authors also highlight the challenges in this field and the future research directions. All information and knowledge presented in this review will be very helpful for the medicinal chemists to find more potent PL inhibitors from herbs or to develop next generation anti-obesity drugs, as well as helpful for the prevention and treatment of obesity and other related metabolic diseases using herba medicines or related products.

12.
China Journal of Chinese Materia Medica ; (24): 3726-3739, 2020.
Article in Chinese | WPRIM | ID: wpr-828391

ABSTRACT

This study is to explore the effect of Qingfei Paidu Decoction(QPD) on the host metabolism and gut microbiome of rats with metabolomics and 16 S rDNA sequencing. Based on 16 S rDNA sequencing of gut microbiome and metabolomics(GC-MS and LC-MS/MS), we systematically studied the serum metabolites profile and gut microbiota composition of rats treated with QPD for continued 5 days by oral gavage. A total of 23 and 43 differential metabolites were identified based on QPD with GC-MS and LC-MS/MS, respectively. The involved metabolic pathways of these differential metabolites included glycerophospholipid metabolism, linoleic acid metabolism, TCA cycle and pyruvate metabolism. Meanwhile, we found that QPD significantly regulated the composition of gut microbiota in rats, such as enriched Romboutsia, Turicibacter, and Clostridium_sensu_stricto_1, and decreased norank_f_Lachnospiraceae. Our current study indicated that short-term intervention of QPD could significantly regulate the host metabolism and gut microbiota composition of rats dose-dependently, suggesting that the clinical efficacy of QPD may be related with the regulation on host metabolism and gut microbiome.


Subject(s)
Animals , Rats , Bacteria , Classification , Chromatography, Liquid , Drugs, Chinese Herbal , Pharmacology , Gastrointestinal Microbiome , Metabolomics , Tandem Mass Spectrometry
13.
China Journal of Chinese Materia Medica ; (24): 3759-3769, 2020.
Article in Chinese | WPRIM | ID: wpr-828388

ABSTRACT

Schisandra is the mature fruit of Schisandra chinensis(known as "north Schisandra") or S. shenanthera(known as "south Schisandra"). S. chinensis contains a variety of lignans, volatile oils, polysaccharides, organic acids and other chemical constituents; among them, lignans are recognized as the characteristic active components. Clinical studies have found that Schisandra and Schisandra-related products have a better effect in the prevention and treatment of viral hepatitis, drug-induced liver injury, liver cirrhosis, liver failure and other liver diseases. Modern pharmacological studies have demonstrated that Schisandra has a variety of pharmacological activities, such as anti-inflammation, antioxidation, anticancer, regulation of nuclear receptor, antivirus, regulation of cytochrome P450 enzyme, inhibition of liver cell apoptosis and promotion of liver regeneration. This paper reviews the studies about the applications and mechanism of Schisandra in the prevention and treatment of liver diseases, in the expectation of providing guidance for the development of hepatoprotective drugs from Schisandra and the clinical applications of Schisandra-related products.


Subject(s)
Humans , Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Fruit , Chemistry , Lignans , Protective Agents , Schisandra
14.
China Journal of Chinese Materia Medica ; (24): 566-573, 2019.
Article in Chinese | WPRIM | ID: wpr-777463

ABSTRACT

This study investigated the inhibitory effect of eight natural flavonoids in Chinese herb Scutellariae Radix on huamn cytochrome P450 1 A(CYP1 A), a key cancer chemo-preventive target. In this study, phenacetin was used as a probe substrate for CYP1 A, while human liver microsomes and recombinant human CYP1 A enzymes were used as enzyme sources. Liquid chromatography-tandem mass spectrometry was used to monitor the formation rates of acetaminophen, the O-deethylated metabolite of phenacetin. The dose-dependent inhibition curves were depicted based on the changes of the formation rates of acetaminophen, while the IC_(50) were determined. Inhibition kinetic analyses and docking simulations were used to investigate the inhibition modes and mechanism of wogonin(the most potent CYP1 A inhibitor in this herb), while the inhibition constants(K_i) of wogonin against both CYP1 A1 and CYP1 A2 were determined. Among all tested flavonoids, wogonin, 7-methoxyflavanone and oroxylin A displayed a strong inhibitory effect on CYP1 A(IC_(50)100 μmol·L~(-1)). Further investigations demonstrated that wogonin had a weak inhibitory effect on other human CYP enzymes, suggesting that it could be used as a lead compound for the development of specific inhibitors of CYP1 A. Furthermore, the inhibition kinetic analyses clearly demonstrated that wogonin could strongly inhibit phenacetin O-deethylation in both CYP1 A1 and CYP1 A2 in a competitive manner, with K_i values at 0.118 and 0.262 μmol·L~(-1), respectively. Molecular docking demonstrated that wogonin could strongly interact with CYP1 A1 and CYP1 A2 via hydrophobic and π-π interactions, as well as Ser120 and Ser116 in CYP1 A1 via hydrogen-bonding. In conclusion, this study found that some flavonoids in Scutellariae Radix displayed a strong inhibitory effect on CYP1 A, while wogonin is the most potent CYP1 A inhibitor with a relatively high selectivity towards CYP1 A over other human CYPs.


Subject(s)
Humans , Chromatography, Liquid , Cytochrome P-450 CYP1A1 , Cytochrome P-450 Enzyme Inhibitors , Pharmacology , Flavanones , Pharmacology , Flavonoids , Pharmacology , Molecular Docking Simulation , Scutellaria baicalensis , Chemistry
15.
Acta Pharmaceutica Sinica ; (12): 963-970, 2019.
Article in Chinese | WPRIM | ID: wpr-780180

ABSTRACT

This paper summarizes research progresses of Chinese scholars in the field of drug metabolism and pharmacokinetics (DMPK) in 2018. Chinese scholars focused on drug metabolizing enzymes and transporters, and carried out studies on the mechanisms of drug metabolism and transport of active molecules. Topics of research included regulatory mechanisms of drug metabolizing enzymes or transporters, and their implications in drug development and disease etiology or progression. Here, we summarized studies on drug toxicity based on drug metabolism or transport, rational drug use in the clinic, drug metabolism mediated by intestinal flora, metabolism of traditional Chinese medicines, and new technologies or models in DMPK. In recent years, the research focus of drug metabolism in China has transformed from serving for new drug discovery and rational use, to innovation driven and mechanism oriented research. The domestic research topics and technology utilization are gradually aligning with the international conventions.

16.
Acta Pharmaceutica Sinica ; (12): 58-65, 2017.
Article in Chinese | WPRIM | ID: wpr-779820

ABSTRACT

Carboxylesterase 1 (CE1) is an important serine hydrolase in mammals, which involved in the hydrolysis of a variety of compounds (endogenous substrates like cholesterol and xenobiotic compounds like ester-contain drugs and pesticides). This study aimed to design and develop the fluorescent probe substrates for human carboxylesterase 1 (hCE1), on the basis of the structural features of hCE1 preferred substrates. Four carboxylic esters deriving from BODIPY-8-carboxylic acid were designed and synthesized. After then, reaction phenotyping assays and chemical inhibition assays were used to evaluate the selectivity of these four ester derivatives towards hCE1. Our results clearly demonstrated that the substrate specificity of these ester substrates towards hCE1 would be improved with the decrease of the alcohol group on BODIPY-8-carboxylesters, while BODIPY-8-carboxylesters with small alcohol groups including methyl (BCM) and ethyl (BCE) esters could serve as the ideal probe substrates for hCE1. Given that BCM exhibit rapid hydrolytic rate in hCE1, we further investigate the enzymatic kinetics of this fluorescent probe substrate in both human liver microsomes (HLM) and recombinant hCE1, as well as to explore its potential application in high-throughput screening of hCE1 inhibitors by using HLM as enzyme source. The results showed that the kinetic behaviors and the affinity of BCM in HLM is much closed to those in recombinant hCE1, implying that hCE1 played the key roles in BCM hydrolysis in HLM. Furthermore, the inhibition study demonstrated that BCM could be used for rapid screening and characterization of hCE1 inhibitors, by using HLM to replace recombinant hCE1 as enzyme source.

17.
Acta Pharmaceutica Sinica ; (12): 26-33, 2017.
Article in Chinese | WPRIM | ID: wpr-779816

ABSTRACT

Cytochrome P4502J2 (CYP2J2) is widely distributed in various human tissues and takes a part in the metabolism of endogenous compounds and drugs. CYP2J2 can convert arachidonic acid (AA) to expoxyeicosatrienoic acids (EETs), which have various biological effects, implying the important role of CYP2J2 in the regulation of cardiovascular system and promotion of tumor progression and metastasis. Additionally, CYP2J2 plays an indispensable role in the intestinal metabolism of various drugs, such as astemizole, terfenadine and ebastine. In this review, the metabolic function, characteristic of catalysis and tissue distribution of CYP2J2 are discussed with the latest literatures both in China and abroad. The state-of-the-art methods for characterization of CYP2J2 and current trend of substrate discovery as well as its relationship with disease are highlighted. This review gives in-depth understanding of the function of CYP2J2 and its role in disease advance. The information of ligand (substrate and inhibitor) will provide the theoretical guidance and reference to the development of novel drugs for CYP2J2.

18.
Acta Pharmaceutica Sinica ; (12): 1705-1714, 2017.
Article in Chinese | WPRIM | ID: wpr-779779

ABSTRACT

This study was designed to investigate the inhibitory effects of regorafenib (REG) on the catalytic activities of 12 kinds of human UGT isoforms and human liver microsomes (HLM) in vitro. The broader potential of REG to perpetrate drug-drug interactions (DDI) arising from UGT enzyme inhibition is predicted by in vitro-vivo extrapolation (IV-IVE). Fifty mixed HLM and 12 kinds of recombinant UGTs were utilized as enzyme sources to evaluation the inhibitory effects of REG against UGTs. 4-Methylumbelliferone (4-MU) as a nonselective substrate of UGTs except for UGT1A4, N-(3-carboxypropyl)-4-hydroxy-1,8-napht-halimide (NCHN) and N-butyl-4-(4-hydroxyphenyl)-1,8-naphthalimide (NPHN) as the specific fluorescent substrate of UGT1A1, and trifluoperazine (TFP) as the specific substrate of UGT1A4. The half maximal inhibitory concentration (IC50) was calculated via the nonlinear regression analysis using Graphpad Prism 6.0, the inhibition kinetic types were selected and evaluated based on the intersection location of Lineweaver-Burk plot and Dixon plot, and Ki values were determined by the second plot of slopes. The potential DDI risk based on UGT1A1 inhibition was also evaluated through the in vitro parameters. The results demonstrated that REG displayed strong inhibitory effects against UGT1A1, 1A7, 1A9, and 2B7. The IC50 values were from 0.15 to 6.6 μmol·L-1 and Ki values from 0.027 to 14 μmol·L-1. The REG exerted competitive inhibition against UGT1A1-mediated 4-MU-O-glucuronidation and UGT1A1-mediated NPHN-O-glucuronidation, while the inhibition of NCHN-4-O-glucuronide by REG was suited to noncompetitive inhibition in both HLM and recombinant UGT1A1. Likewise, REG exhibited a mixed efficacy in inhibition of UGT1A7-, UGT1A9-, and UGT2B7-catalyzed 4-MU-O-glucuronidation. The AUC ratio of UGT1A1 specific substrates NPHN and NCHN can be increased by 101% to 302% and 13% to 109%, respectively. These results suggest that much caution should be exercised when REG is co-administered with UGT1A1 substrates.

19.
Acta Pharmaceutica Sinica ; (12): 291-295, 2017.
Article in Chinese | WPRIM | ID: wpr-779592

ABSTRACT

Daphnetin is quickly eliminated in rats after dosing, but the mechanism remains unclear. This study was aimed to investigate the in vitro metabolism of daphnetin using rat liver S9 fractions (RLS9). The metabolites formed in RLS9 were identified and the kinetic parameters for different metabolic pathways were determined. HPLC-DAD-MS analysis showed that daphnetin was biotransformed to six metabolites, which were identified as 7 or 8 mono-glucuronide and mono-sulfate, 8-methylate, and 7-suflo-8-methylate. Methylation and glucuronidation of daphnetin exhibited the Michaelis-Menten kinetic characteristics, whereas the substrate inhibition kinetic and the two-site kinetic were observed for 8-sulfate and 7-sulfate formations. Of the 3 conjugation pathways, the intrinsic clearance rate for sulfation was highest, followed by methylation and glucuronidation. By in vitro-in vivo extrapolation of the kinetic data measured in RLS9, the hepatic clearance were estimated to be 54.9 mL·min-1·kg-1 which is comparable to the system clearance (58.5 mL·min-1·kg-1) observed in rats. In conclusions, the liver might be the main site for daphnetin metabolism in rats. Sulfation, methylation and glucuronidation are important pathways of the hepatic metabolism of daphnetin in rats.

20.
Acta Pharmaceutica Sinica ; (12): 543-2016.
Article in Chinese | WPRIM | ID: wpr-779202

ABSTRACT

Catechol O-methyltransferase (COMT), one of the endogenous phase II metabolizing enzymes, expressed by chromosome 22. COMT catalyzes the transfer of a methyl group from common methyl donor S-adenosyl-L-methionine (AdoMet or SAM) to one of the catechol hydroxyls. COMT participates in the metabolism of many catechols in vivo, e.g. dopamine, epinephrine, noradrenaline, estradiol. Furthermore COMT also plays important roles in the metabolism of xenobiotic catechols from food and drug. COMT play a critical role in the management of catechols. Metabolism disorders of COMT can cause many diseases or an increased risk of diseases, e.g. Pakinson diseases, schizophrenia, and breast cancer. In this review, we explains the relationship of COMT and related-diseases through expounding disease caused by the COMT metabolic disorders. Finally, we hope that there will be more effective treatments for the COMT metabolism related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL